Reliability estimation in Rayleigh distribution based on fuzzy lifetime data

نویسندگان

  • Abbas Pak
  • Gholam Ali Parham
  • Mansour Saraj
چکیده

Some work has been done in the past on the estimation of reliability characteristics of Rayleigh distribution based on complete and censored samples. But, traditionally it is assumed that the available data are performed in exact numbers. However, in real world situations, some collected lifetime data might be imprecise and are represented in the form of fuzzy numbers. Thus, it is necessary to generalize classical statistical estimation methods for real numbers to fuzzy numbers. In this paper, we present a Bayesian approach to estimate the parameter and reliability function of Rayleigh distribution from fuzzy lifetime data. Based on fuzzy data, the Bayes estimates can not be obtained in explicit forms; therefore, we provide two approximations, namely Lindley’s approximation and Tierney and Kadane’s approximation as well as a Markov Chain Monte Carlo method to compute the Bayes estimates of the parameter and reliability function. Their performance is then assessed through Monte Carlo simulations. Finally, one real data set is analyzed for illustrative purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Exponentiated Lomax – Rayleigh (E-LR) Distribution, Properties and Applications

In this paper a new four-parameter lifetime distribution named “the exponentiated Lomax – Rayleigh (E-LR) distribution” has been suggested that it has an increasing hazard rate for modeling lifetime data. The Lomax distribution has applications in economics, actuarial modelling, reliability modeling, lifetime and queuing problems and biological sciences. In this paper Firstly, the mathematical ...

متن کامل

Efficient Estimation of the Density and Cumulative Distribution Function of the Generalized Rayleigh Distribution

The uniformly minimum variance unbiased (UMVU), maximum likelihood, percentile (PC), least squares (LS) and weighted least squares (WLS) estimators of the probability density function (pdf) and cumulative distribution function are derived for the generalized Rayleigh distribution. This model can be used quite effectively in modelling strength data and also modeling general lifetime data. It has...

متن کامل

A New Five-Parameter Distribution: Properties and Applications

In this paper, a new five-parameter lifetime and reliability distribution named “the exponentiated Uniform-Pareto distribution (EU-PD),” has been suggested that it has a bathtub-shaped and inverse bathtub-shape for modeling lifetime data. This distribution has applications in economics, actuarial modelling, reliability modeling, lifetime and biological sciences. Firstly, the mathematical and st...

متن کامل

E-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function

‎Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...

متن کامل

Bayesian reliability analysis for fuzzy lifetime data

Lifetime data are important in reliability analysis. Classical reliability estimation is based on precise lifetime data. It is usually assumed that observed lifetime data are precise real numbers. However, some collected lifetime data might be imprecise and are represented in the form of fuzzy numbers. Thus, it is necessary to generalize classical statistical estimation methods for real numbers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Systems Assurance Engineering and Management

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014